

SNOOPER-DP RLY Installation/Operation Manual

Version 4.1

MAGO Technology 2022.08.01 revision

- SNOOPER-DP is an innovative solution for detecting a HIDDEN METAL OBJECT inside a pocket or bag without body check.
- The system can detect CONCEALED WEAPONS such as daggers and rifles those made of ferrous materials.
- SNOOPER-DP has the elaborate function of compensation about the magnetic disturbance from the large-sized moving metal objects such as an ELEVATOR or a BUS near the system.
- Sensor modules of the system were designed to be installed on the standard barrier poles.
- ✓ The system consists of a DP Controller board and two of micro MAD Sensors (Barrier poles are sold separately.)
- ✓ SNOOPER-DP system can be set up easily with a notebook PC or it can be connected to the user's security system by the standard Ethernet LAN.

1. Specifications

	Value Note		
Input Power	DC12V	Use 2A adaptor	
Output	Relay & Ethernet	Digital data communication & Relay output	
Sensors	2	Two DP Sensors	
Controller	1	DP Controller	
Led	1	Detection Level	
Operation Temperature	-10℃ ~ 50℃	Industrial Spec.	

< Table 1. Specifications >

2. Installation

<Figure 1. Installation of two DP Sensors>

Step 1. Install SNOOPER-DP Sensors

Install two sensor heads of the system on the barrier poles as figure 1.

- ✓ The direction of two sensor heads should be the same toward the passage (figure 2. Please refer the arrows on the top plate of the sensor.)
- ✓ The setup distance between two sensors is **1.1** ~ **1.3 meter**.
- ✓ The vertical position of two sensors is about **0.9 meter** from the floor.
- \checkmark Two sensors must be fixed on the solid pillar which never move or shake.

•

<Figure 2. The direction of the two sensor heads>

<Figure 3. Bottom of DP Sensor>

· Step 2. Connect the sensors to the DP controller

There are two sockets for **SNOOPER-DP** sensors on the controller which named '**Sensor A**' and '**Sensor B**'. Each sensor should be connected to the socket. Make it sure the power is off while connecting.

Step 3. Connect the DP controller to PC

There are two communication interfaces on the DP controller. One is '**UART interface**' and the other is '**Ethernet Interface**'. The UART port can be connected with a PC using the UART port. The Ethernet port can be connected with an **ACCESS POINT** by a standard Ethernet cable.

Step 4. Turn on the SNOOPER-DP

- ✓ Use '**Power S/W**' to turn on the DP controller, and the power LED will be on.
- \checkmark Two LEDs beside each sensor socket will be on when the sensor is working.

Step 5. Start the DP application on PC

After 'Step 4', user can communicate with the **DP-controller** by UART interface or Ethernet (please refer section 4.) The **SNOOPER-DP** Controller send a packet at every specific time. The information of protocol and communication is in another document of '**SNOOPER-DP Protocol**'.

3. Components on a SNOOPER-DP Controller

<Figure 4. Components of a DP Controller>

Name	Description
	- -
Power switch	The switch is to turn on and off the controller.
Power LED	Power LED is turned on when the DP Controller is powered-on.
Power Jack	User should use DC 12V, 2A adapter.
Sensor A & B	Each sensor is connected to this socket respectively.
LED of Sensors	Sensor LED (the LED near the socket) is turned on when each connected sensor sends data to the controller. Sensor LED is turned off either the SNOOPER-DP sensor is not connected or doesn't send any data to the controller.
Ethernet LED	 LST LED indicates that the DP controller is working as a TCP Server on the connected network. CON LED is turned on when there is a client that is connected to the controller. DATA LED indicates that the DP controller sends or gets any data from/to a client.
Default IP	User can reset the controller with the default IP address by 'Jumper' setting when the current saved IP address has a problem.
Relay output	The relay turns on if the detection level is higher than the detection threshold.
Relay threshold	User can set relay threshold.
Detection level LED	The level of the detected signal is displayed.
Relay force switch	Relay is forced ON.
Calibration switch	Calibration of both sensors is executed.

<Table 2. Description of the components on the DP controller>

<Table 3. UART setting>

Jumper Set	Detail
U-to-U Restore	 Set 'Jumper' at red mark +3.3V level UART signal is output.

Jumper Set		Boot-up Detail
		1. Set 'Jumper' at red mark
		Boot-up with default IP Address
	U-to-U	Static IP Address 192.168.0.222
_ [Subnet Mask 255.255.255.0
	Restore	Gateway 192.168.0.1
i		2. Remove 'Jumper' at red mark
		3. Boot-up with saved IP Address

<Table 4. Default IP address on boot-up>

* User can manually set the IP Address of a SNOOPER-DP system (IP address, Subnet mask, Gateway) by the supported application program. Please refer Section 5.

Threshold		Detail
0	User setting	<u>⊾ ⁵ 6</u>
1	30	
2	60	206
3	90	User can set the relay threshold using the rotary switch.
4	120	If the detection level is <u>higher than the relay threshold</u> , the Relay turns ON.
5	150 (default)	The threshold '0' is a user-set threshold that can be set in DP
6	180	software(refer to 'SNOOPER-DP Protocol' document).
7	210	X Caution : The relay threshold and software threshold are <u>different</u> .
8	240	Example : Detection level $>$ Relay threshold \rightarrow Pelay turns on
9	270	Detection level > Software threshold \rightarrow Software alarm sounds

<Table 5. Detection threshold setting>

4. SNOOPER-DP app. software

4.1 Connection and Control with the SNOOPER-DP app.

Step 1. Place two sensor heads and connect the cable to the DP controller

- ① Before power on the system, fix two sensor heads on the fixtures first.
- 2 With a SNOOPER-USB cable, user can easily make the connection between the DP controller and PC.
- ③ For using a LAN system, connect a standard LAN cable between the DP controller and an access point device of your internal network.
- ④ After power-on, the sensor start calibration automatically, so **DO NOT MOVE** the sensor after power-on.

Step 2. Run the DP application (v4.1)

• Run the **SNOOPER-DP app** on your PC

<Figure 5. Screen of the SNOOPER-DP App. v.4.1>

Name	Description
	The size(quantity of magnetic anomaly) of the target
Real-time data graph	object are shown on this screen in real time.(The
	resolution of X-axis is about 6ms)
Connect button	Set up the connection between PC and DP controller.
Camera button	Set up the camera that is connected to the PC.
	Open a windows that shows all the commands and
Log button	answers to/from the controller.
Alarm control button Selection of alarm sound and time.	
Concer control window	This menu is for setup the status and characteristics of
Sensor control window	two sensors.
	Manually type the software threshold for the alarm
Threshold input box	(this threshold is for the alarm of PC S/W, not the
	RELAY in the DP controller)
	User can set the software threshold by mouse move.
Threshold control bar	(this threshold is for the alarm of PC S/W, not the
	RELAY in the DP controller)
Level of threat	Shows the level(size) of the detected object(Level 1-8).

<table 6.<="" th=""><th>Description</th><th>of the</th><th>screen</th><th>></th></table>	Description	of the	screen	>
---	-------------	--------	--------	---

Step 3. Set up the connection mode

CONNECT SETU	IP			×
USE	3	тср	UDP	
COM1		~	Search COM	
	Connect		Disconnect	

<Figure 6. Screen of the CONNECTION menu>

- ① Push the "**CONNECT**" button and run connection setup menu.
- ② Select the **COMMUNICATION MODE** (between PC and the SNOOPER board)
- ③ For using LAN system, just press the button of **CONNECT** when you use the default IP address, and if you changed the IP address then modify it and press the button.

After **STEP 3**, the app. start to show the streaming signal from the SNOOPER-DP system in real time.

Step 4. Setting the user's parameters

A. Set the software threshold for the alarm (PC)

- ① Open the **threshold input box**, and type the user's threshold.
- ② Click and drag the **threshold control bar**.

B. Set the range of Y of the data screen

- ① Click the **Y graph range** button.
- ② Type the value of max. Y.

C. Choose the alarm type and time

- ① Click the **alarm** button.
- ② Choose the type and time of alarm.

Alarm		×
Sound C	DN	Sound OFF
Alarm Sound		
Sound Select		Play Time
Sound 1	यंग	1 sec
Sound 2	्रीग	2 sec
Sound 3	⊈्⊓	3 sec
		4 sec
		5 sec

<Figure 7. Window of alarm setup >

D. Setup of the camera for the system (USB or IP)

- ① Click the **Connect** button in CAMERA menu.
- ② Choose the USB or IP interface for the camera.
- ③ Check the **AUTO CAPTURE** to save automatically the still picture from the camera when the alarm signal is ringing.
- ④ It saves 3 sequential pictures (interval is 300ms) and a data graph when the alarm goes off.

<Figure 8. Window of CAMERA setup >

X Double-click to view the full size of the screen.

Step 5. Sensor Control menu

Sensor A	Disconnected	Auto	Calibration	Reset	Control Panel
Sensor B	Disconnected	Auto	Calibration	Reset	

<Figure 9. Sensor control window>

<Table 7. Message box>

Message	Detail	
Disconnected	The sensor is disconnected.	
Normal Operation	The sensor is working in normal operation.	
Calibrating	The sensor is on calibrating.	

<Table 8. Buttons of sensor control menu>

button	Description					
Auto	Automatically re-calibration of the sensor when the change of					
Auto	temperature detected.					
Calibration	re-calibration of the sensor manually.					
Reset	Reset the sensor including initialization.					
Control Panel	Open the control Panel of the sensor					

Click the button of CONTROL PANEL to open the following window

<Figure 10. Sensor control panel>

A. Disturbance rejection(X axis)

User can adjust the intensity of the disturbance rejection (X-axis.) If there is an elevator or a large-sized moving iron(source of disturbance) in the line of X axis of the installed sensors, then higher value of this function will be helpful (default value is 3.)

www.magotec.com

•

B. Sensitivity

User can adjust the overall sensitivity from **1** to **10**. Default value is **5**, and the higher value is more sensitive for the overall system.

C. Button of LOAD / APPLY

- ① **APPLY** button set the current parameters to EEPROM in the DP Controller, so even if the system is rebooted, the setting parameters are stationary as the final status.
- **LOAD** button recall the current staus of the two parameters(**disturbance rejection** and **sensitivity**)

4.2 Setting the HARDWARE THRESHOLD of the RELAY in DP controller

Step 1. Make connection to the DP controller with PC App.

- ① Run the app, and make connection to the DP system.
- ② Click the button of **CONTROL PANEL** and open the sensor control panel.

<Figure 11. Text-box of command>

Step 2. Send the command of setting the hardware threshold of the RELAY

- Input the command of '**4A**' at the command box beside SEND button, and type the value of threshold (e.g. 150) at the below data box.
- 2 Push the SEND button.
- ③ Then the value of hardware threshold will be stored at EEPROM in the DP board, so the value is maintained even if the power is reset.

4.3 Setting the minimum ON-time of the RELAY in the DP controller

Step 1. Make connection to the DP controller with PC App.

- ① Run the app, and make connection to the DP system.
- ② Click the button of **CONTROL PANEL** and open the sensor control panel.

<Figure 10. Sensor control panel>

Step 2. Send the command of setting the minimum time

 Input the command of '4C' at the command box and type the minimum time of the relay at the below data box.

(unit is ms; 1500 means 1.5 sec, 3000 means 3.0 sec)

- 2 Push the SEND button.
- ③ Then the value of minimum on time will be stored at EEPROM in the DP board, so the value is maintained even if the power is reset.

4.4 Restore parameters to the value of factory default

- 1 Input the command of '40' at the command box and '0' at the below data box
- 2 Push the SEND button.

5. Ethernet network setting

5.1 IP setting app.

<Figure 11. Network information by the IP setting app>

Step 1. Click the 'Search' button.

Step 2. Check the message(2) "Search::Start", "Search::Send Done", "Search::Found."

Step 3. Select the device (Mac-IP) in the device list (3)

Step 4. Network information is shown on the list (4)

* The SNOOPER-DP should be in the same network group with the PC.

5.2 Saving network information

Device List		Message	
02:FE:00:00:00:00 - 192.168.0.222		Search :: Found 1 Save :: Start Save :: Send Done Save :: Send Done Save :: Device Removed Save :: Completed Search :: Start Search :: Start Search :: Send Done Search :: Found 1	
Setting		Control	
Device (2)	02:FE:00:00:00:00		3
IP Mode	● STATIC O DHCP	Search	Save
IP Address	192,168,0,222		
Subnet Mask	255,255,255,0		
Gateway	192,168,0,1		
Port	4470	MA	CO
Mac	02:FE:00:00:00:00	IVIAGO	

<Figure 12. Saving network information>

Step 1. Select the device which you want to set in the list (1)

Step 2. Set the network information in the message screen (④)

Step 3. Click the 'Save' button.

Step 4. Check the message(④) "Save::Start", "Save::Parsing Done", "Save::Send Done", "Save::Device Removed", "Save::Completed."

 \checkmark Load and check the information again after all the process of 5.2.

6. Trouble Shooting

6.1 Magnetic Calibration process

- If the calibration process of a sensor module does not finish within 30 seconds, then check the strong magnetic materials near the sensor.
- For example, rarely some of the barrier poles have a magnet inside the belt tensioner.

<Figure 13. Check magnetic materials near the sensor>

6.2 An iron door or elevator near the sensor

 If the movement of the iron door or elevator near the sensor causes disturbance, please install the system as the stepped direction as the figure 9, or move the system 2~3 meters away of it.

<Figure 14. Install two sensors as a stepped direction near an iron door>

6.3 Magnetic buttons or ornaments

<Figure 15. Magnetic ornaments may cause the perturbation of the magnetic field>

- If a magnetic object is attached to the user's cloth, **SNOOPER-DP** may make some output signals.
- Some shoes have iron skeleton inside its bottom of the shoe.

6.4 Do not open the sensor cover

• OPENNING THE SENSOR COVER makes temperature changes and random disturbances, so **DO NOT OPEN** the sensor cover.

7. Dimension of the Sensor case

Please contact to <u>sales@magotec.com</u>

